Inici > Cultivar la mirada matemàtica > Optimització edificada (NY02)
Optimització edificada (NY02)
dilluns 14 de gener de 2008, per ,
Etiquetes: Geometria Arquitectura OptmitzacióHearst Tower, New York
Crida l’atenció l’estructura en forma de graella diagonal que Norman Foster va dissenyar per a la Hearst Tower. Els triangles que la componen es veuen reforçats per suports diagonals entrecreuats fets d’acer que donen resistència a l’edifici, i distribueixen el pes i les forces internes de manera òptima. Aquesta carcassa permet que els diferents pisos se sostinguin per ells mateixos sense la necessitat d’emprar columnes que llevin espai i per si tot això fos poc, la quantitat d’acer estructural (que, per a més fer, és 80% reciclat) necessari per construir aquest gratacels tan sorprenent és un 20% inferior a la que es necessita per a les torres convencionals. A més es tracta d’un edifici pioner en la sostenibilitat mediambiental pel que fa a estalvi d’energia i ús eficient dels recursos.
En relació a això, una de les aplicacions de les matemàtiques que al llarg de la història ha trobat més profit per a la societat, és l’optimització. Un problema d’optimització consisteix a, donades unes condicions inicials fixes, determinar unes variables que es troben en un interval, de manera que es trobi un màxim o un mínim del resultat, optimizant-ne el procés. Un exemple bàsic és, donada una làmina d’àrea fixa, trobar les dimensions d’una capsa que es pot construir amb la làmina, perquè el volum de la capsa resultant sigui màxim. Està clar que l’objectiu d’estudiar aquests problemes és l’eficiència en la utilització de recursos, tan necessària cada vegada més.
En poques paraules, la Hearst Tower és l’optimització edificada.